RELIABILITY REPORT

FOR
MAX4627EUK
PLASTIC ENCAPSULATED DEVICES

October 1, 2001

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Written by

Jim Pedicord
Quality Assurance Reliability Lab Manager

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX4627 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX4627 is a low-on-resistance, low-voltage, single-pole/single-throw (SPST) analog switch that operates from $a+1.8 \mathrm{~V}$ to +5.5 V single supply. The MAX4627 is normally closed (NC). This device also has a fast switching speed ($\mathrm{t}_{\mathrm{ON}}=50 \mathrm{~ns}$ max, $\mathrm{t}_{\text {OFF }}=30 \mathrm{~ns}$ max).

When powered from a +5 V supply, the MAX4627 offers 0.5 ohms max on-resistance (R_{ON}) with 0.1 ohms max R_{ON} flatness, and its digital logic input is TTL compatible. This switch also features overcurrent protection to prevent device damage from short circuits and excessive loads.
B. Absolute Maximum Ratings

Item

Voltages Referenced to GND
V+, IN,
NO, NC, COM (Note 1)
Continuous Current NO, NC to COM
Peak Current NO, NC to COM
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\right)$
Junction Temperature
Storage Temp.
Lead Temp. (10 sec.)
Power Dissipation
5 Lead SOT-23
Derates above $+70^{\circ} \mathrm{C}$
5 Lead SOT-23

Rating

$$
\begin{aligned}
& -0.3 \mathrm{~V} \text { to }+6 \mathrm{~V} \\
& -0.3 \mathrm{~V} \text { to }(\mathrm{V}++0.3 \mathrm{~V}) \\
& \pm 400 \mathrm{~mA} \\
& \pm 800 \mathrm{~mA} \\
& \\
& +150^{\circ} \mathrm{C} \\
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& +300^{\circ} \mathrm{C} \\
& 571 \mathrm{~mW} \\
& 7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

II. Manufacturing Information

A. Description/Function: 1Ω, Low-Voltage, Single-Supply SPDT Analog Switch
B. Process:
C. Number of Device Transistors:

T06 (0.6 micron TSMC CMOS)
D. Fabrication Location:

186
Taiwan, USA
E. Assembly Location: Malaysia
F. Date of Initial Production:

January, 2000

III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:

Gold (1 mil dia.)
F. Mold Material:

Epoxy with silica filler
G. Assembly Diagram:
H. Flammability Rating:

5 Lead SOT-23
Copper
Solder Plate
Non-Conductive

Buildsheet \# 05-1201-0129
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

IV. Die Information

A. Dimensions:
57×35 mils
B. Passivation:
C. Interconnect:
$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
D. Backside Metallization:
E. Minimum Metal Width:
F. Minimum Metal Spacing:
Metal 1: 0.8 microns; Metal 2: 0.8 microns (as drawn)
G. Bondpad Dimensions:
H. Isolation Dielectric:
SiO_{2}
I. Die Separation Method:
Wafer Saw

V. Quality Assurance Information

$\begin{array}{ll}\text { A. Quality Assurance Contacts: } & \text { Jim Pedicord (Reliability Lab Manager) } \\ & \text { Bryan Preeshl (Executive Director of QA) } \\ & \text { Kenneth Huening (Vice President) }\end{array}$
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the $135^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$
\begin{aligned}
& \lambda=\frac{1}{\text { MTTF }}=\frac{4.04}{192 \times 4389 \times 160 \times 2} \text { (Chi square value for MTTF upper limit) } \\
& \longleftrightarrow \text { Thermal acceleration factor assuming a } 0.8 \mathrm{eV} \text { activation energy } \\
& \lambda=14.98 \times 10^{-9} \quad \lambda=14.98 \text { F.I.T. }\left(60 \% \text { confidence level } @ 25^{\circ} \mathrm{C}\right. \text {) }
\end{aligned}
$$

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure the reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on lots exceeding this level. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR-1L).
B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ or HAST tests are performed quarterly per device/package family.
C. E.S.D. and Latch-Up Testing

The AH25Z-3Z die type has been found to have all pins able to withstand a transient pulse of $\pm 1000 \mathrm{~V}$, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of $\pm 250 \mathrm{~mA}$ and/or $\pm 20 \mathrm{~V}$.

Table 1

Reliability Evaluation Test Results

MAX4627EUK

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test (Note 1)				
	$\mathrm{Ta}=135^{\circ} \mathrm{C}$	DC Parameters	160	1
	Biased	\& functionality		
	Time = 192 hrs.			
Moisture Testing (Note 2)				
Pressure Pot	$\mathrm{Ta}=121^{\circ} \mathrm{C}$	DC Parameters \& functionality	77	0
	$P=15 \text { psi. }$			
	$R H=100 \%$			
85/85	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	DC Parameters \& functionality	77	0
	RH = 85\%			
	Biased			
	Time $=1000 \mathrm{hrs}$.			

Mechanical Stress (Note 2)

Temperature	$-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$	DC Parameters	77
Cycle	1000 Cycles		0
	Method 1010		

Note 1: Life Test Data may represent plastic D.I.P. qualification lots for the SOT-23 package. Note 2: Generic Package/Process Data.

TABLE II. $\underline{\text { Pin combination to be tested. } 1 / 2 / 2 / 20}$

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except $\mathrm{V}_{\text {PS1 }}$ 3/	All $\mathrm{V}_{\text {PS } 1}$ pins
2.	All input and output pins	All other input-output pins

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground
(e.g., where $\mathrm{V}_{\mathrm{PS} 1}$ is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}, G N D,+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{REF}}$, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $V_{s s 1}$, or $V_{S S 2}$ or $V_{S S 3}$ or $V_{C C 1}$, or $V_{C C 2}$) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the

other input and output pins connected to terminal B. All pins except the input or output pin being tested and the
Mil Std 883D
combination of all the other input and output pins shall be open.
Method 3015.7
Notice 8

- BDNDING AREA

NDTE: CAVITY DUWN

PKG.CODE: $\cup 5-1$		APPREVALS	DATE	/V/ДXI/VI	
CAV./PAD SIZE:	PKG.			BUILISHEET NUMBER:	REV:
64×45	DESICN			05-1201-0129	A

